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This took more time than expected, so lecture 2 covered up to and including imaging. Remaining topics will be moved to lecture 3 (replacing some of the applications of
radio astronomy)



Fourier transform
X(w) = F{a(t)} = % /_ O; p(t)etdt

1 OO twt
x(t) = \/—Q_W/OOX(w)e dw

» Fourier transforms pop up all over in radio astronomy (for
example, beam of a dish/phased array is Fourier
transform of ‘illumination function’). The heart of
interferometry is the Fourier transform.

* Many properties of Fourier transforms can be used to
understand behaviour of the system.

There are variations on the FT: using frequency instead of angular frequency, with different conventions for where to put the 2pi factors. None of it really matters except
for scaling.



Fourier properties

* Always two variables, a Fourier (variable) pair, with
opposite units. Time and frequency, position and
wavenumber, angular position and number of
wavelengths, wavelength squared and Faraday depth.

e |n general, input and output are both complex. Certain
symmetries affect this.

e Can be extended to multiple dimensions. The sky is 2D
and has a corresponding 2D Fourier transform.*

*: when only dealing with small parts of the sky, then we can treat the sky as effectively flat and normal Fourier formalism is fine. Going to larger scales starts to mess with
this, in ways that can be dealt with (w-projection, etc). Looking at the whole sky becomes problematic, in that it makes the math a lot harder.



Fourier properties

Domain A Domain B Description
X(t) + y(1) X(w) + Y(w) Linearity
a*x(t) a*X(u)) Linearity

Hermitian Symmetry: to make a real function
’* all imaginary parts of FT must have
X((L))=X(-(D) equal and opposite counterpart

Even symmetry implies made of

Real and even Real and even  cosines only (sine/imaginary
components all equal 0)

Real

All of these theorems also apply in reverse.



Fourier properties

Domain A Domain B Description

* Scaling: narrower in one domain
X(a t) X(w/a) / |a| makes other domain wider

. Shift theorem: Shift in one domain
X(t-7) X(w)e-iwe results in phase shifts in other
domain.

Convolution theorem: Convolution

X(t) % y(t) X(w)Y (w) of two functions corresponds to
product of Fourier transforms.




Common Fourier
(transform) pairs

Domain A Domain B Description

Delta function has equal signal on all
o(t) 1 frequencies. OR: constant signal
corresponds to zero frequency.

Cos(at) (6((1)-8.)+ Cosine is equal parts positive and
O(w+a)) /2 negative frequency
: Tophat/rectangle transforms to sinc
rect(t) sin ((1))/(,0 function

Airy disk

. Classic circular mirror/dish beam.
(Bessel function)

Circular aperature

Gaussian is it’s own FT (subject to

Gaussian(t)  Gaussian(w) scaling, shift theorems)
Also applies in higher dimensions.




Interferometry: Motivation

A phased array (or dish) requires you to choose what direction to
have peak sensitivity in, then returns the flux density in that
direction (sky convolved with beam). Imaging the sky means
shifting the peak direction all over the sky.

Also, emission from off-target acts as noise (contributing flux
density in sidelobes).

What if you could have a system that just told you where the
emission was, as an output rather than as an input? And treated all
directions as signal, simultaneously?

An interferometer gives you an (incomplete) answer to where the
emission is, for each baseline (pair of antennas); combining many
baselines improves the localization.




Correlation of signals

e Consider the (monochromatic) voltage signals coming off
of two telescopes, with some arbitrary phase difference:

Vi =V cos(wt) Vo =V cos(wt + ¢)

* Correlate them together (multiply and average/integrate):

1 1 [ V? Ve
= / ViVodt = = / 5 (cos(2wt) + cos(¢)) dt = 53 cos(9)




Two-elem/ent interferometer
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Image credit: Fig 3.41 from Essential Radio Astronomy

Mixing (quasi-monochromatic) signals from two antennas yields a result proportional to voltage squared (power), and depending on relative phase (from the geometric
delay). Long delays move outside the quasi-monochromatic correlation time, so the correlation drops to zero. Delay lines correct for this, to put it back at the peak of the
function, but delay line corrects for known/input position (more on this later). In-phase/anti-phase produce strong positive/negative output; 90deg out of phase gives

zero voltage; thus the output tells you the fraction of a wavelength but not the integer number of wavelengths.



Two-element interferometer

e Qutput voltage encodes information on power (flux) and
position, but there are ambiguities

e Add pi/2 phase shift to one of the signals, then correlate
again: cos(¢) becomes sin(¢)

e Do both, and combine as a complex number:

V= V?(COS(¢) —isin(¢)) = Ae "

¢=2n(b-8)/\ mod 27

Ambiguities: every even multiple of pi gives positive correlation, every odd gives negative correlation, and every half-integer gives zero.

The bottom equation defines the complex visibility, the combined output of a cosine and a sine correlator, which contains the full information on the correlation of the
two waves.



Two-element interferometer

F(8)

Image credit: Fig 2.2 from Rodrigo Parra’s website

Consider a measurement with zero phase difference (¢ = 0). It could be that the path difference is zero (at the zenith). Or it could be +2m1. Or +4m. Or 6. And so on. You

end up with this kind of distribution of locations on the sky. The spacing of the fringes depends on the length of the baseline (in wavelengths).
Note that the spacing is narrower towards the zenith compared to the horizon: this will be significant soon.



(3D) Two-element interferometer

Image credit: Rick Perley (NRAO), 14th Synthesis Imaging workshop lectures

Bear in mind that the world is not 2D. Each possible location is actually a ring perpendicular to the baseline vector.
How to resolve the position ambiguity? Have multiple baselines, with different lengths and orientations. Then only one position will line up in all baselines.


https://science.nrao.edu/science/meetings/2014/14th-synthesis-imaging-workshop/lectures
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Image credit: Fig 3.41 from Essential Radio Astronomy

We can define the resolution in terms of the spacing between the ‘fan blades’ in the previous diagram: how does the phase change with small changes in angle? This
leads to the slightly counterintuitive result that the best sensitivity is at the zenith (perpendicular to the baseline). We can rewrite this into a resolution equation with an
effective ‘diameter’ equal to the projected baseline length.



Extending to the whole sky

V= / I(3)e™273"34Q
* Simply integrate over position in the sky

o Start to see weird behaviour: what happens when a source is large

enough to have emission that is both in-phase and anti-phase?
l/)

1 \2

3 /

\_ /

* Emission features larger than AB are resolved out: produce no output
signal on that baseline

1.0




FuIIW3D formulation

v (north)

u (éast)

Image credit: Fig 3.45 from Essential Radio Astronomy

Choose some reference direction, so, and set up a coordinate system with w towards that direction and u,v orthogonal to that. These axes will be the space of (possible)
baselines, normalized in units of wavelengths (\vec{b}/A).
We’ll want to integrate over all directions, s-hat, which will have components /,m,n in these coordinates.



FuIIW3D formulation

dl dm
V1—12 —m?
/m > v (north)

u (éast)

Image credit: Fig 3.45 from Essential Radio Astronomy

Let’s take the unusual approach of thinking of the sky as an infinite plane. The infinitesimal solid angle, dQ, in the direction s-hat, can be expressed like this.



Full 3D formulation

V= / I(é)e—m?édﬂ
V U v, w // e—z’27r(ul—|—vm+wn)dl dm
V1 — l2

I(l ; ) 2 -
V(u,v,w) _ // \/1 _( 72772_) 6—127r(w\/1—l —m )e—ZQW(uH—’Um)dl dm

* The \/1 — [2 — m?2 terms are essentially corrections for trying to
force a Cartesian coordinate system on what is fundamentally a
spherical system. If we consider only a small field of view then we
can neglect this term.

Start with equation from 2D, expand out the solid angle and dot-product.

Has the form of the 2D Fourier transform (with Fourier pairs u and /, and v and m), except for that pesky exp(wn) term.
There are methods (w-projection) that try to work around this term without completely neglecting it.



Full 3D formulation

V(u,v,w) = ei%w//I(l,m)ei2”(“l+vm)dl dm

I(l,m) ://V(u,v,w)ei%wei%(“l”m)dudv

* The fundamental nature of radio interferometry: each visibility is a
measurement of a single component of the Fourier transform of
the sky, with the (angular) frequency corresponding to the length
and orientation of the baseline. Inverting your measured visibilities
returns the image of the sky.




MISSION .

We did it! We have a method of producing images of the sky from correlated measurements. Well, yes, but no. Note that to get the image we need to integrate over u and
v, the space of possible (projected) baselines. So we’d need to have infinitely many baselines in order for this to work.



* Instead of correlating V1 with V2, what if we correlated V>

with V1?
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éy V(—u, —v) = V(u,v)"

12/)\ mod 27 * For every baseline, the opposite

Symmetry

V(u,v,w) = e~ 2 / / I(1,m)e~ 2 ulom) gi gm

e J(I,m) is real, therefore ) must be
Hermitian:

baseline has the opposite phase




(u,v) plane and Earth
rotation synthesis

Image credit: Fig 3.44 from Essential Radio Astronomy

The u,v plane is the parameter space of baselines (ignoring w). Each baseline maps to two positions in the plane (for both ‘directions’ of each baseline). The Earth’s

rotation changes the orientation of the baseline (relative to the source) over time (depending on declination); this can be used to ‘fill in’ different parts of the u,v plane over
time.

Fun fact: 1974 Nobel prize in physics was half for aperture synthesis, including Earth rotation synthesis



Effects of adding baselines
N VAA%/\/\/\/\/\/\/\AVV
A
2,
%

With 2 antennas, you get 1 baseline; with 3 you get 3 baselines; with 4 you get 6 baselines. Adding more improves the reconstruction and gives better position accuracy.



Number of baselines

* The number of baselines scales as Ny = Nant (Nant — 1)
2
* This increases really fast: 7 antennas gives 21 baselines,
27 gives 351 baselines, 63 antennas gives 1953
baselines.

e |f two baselines are the same (same length and
orientation), then they add no new information (but this
can be useful for calibration). Building an array pattern
with no redundancy takes a bit of work.

For large N_ant, this scales as Na2.



Adding realism

* \We don’t measure all possible baselines. How does that
affect our ability to reconstruct the image of the sky?

e We can define a measurement/weight function, W(u,v),
which takes on non-zero values at the position of every
measured baseline:

W(u, U) — Z Z WZJ(S(U — uij)(S(v — Uij)

1 JF

i and j iterate over antennas, so this covers all baselines



I(l,m) = F{V(u,v)}

Vineasured = W (u,v)V(u, v)
F{Vumeasurea} = FAW (u, v)V(u, v)}
F{Vumeasurea} = F{W (u,v)} ® F{V(u,v)}
F{Vimeasured} = F{W (u,v)} ® I(I,m)

I(l,m)measured = bo(l,m) ® I(l,m)

e The synthesized beam, bo, acts as a point-spread
function, convolving the actual sky to give us the measured
image of the sky brightness.

bo(l,m) = F{W (u,v)}

Using script-F to denote Fourier transforms, and applying the Fourier product/convolution theorem, we get the synthesized beam.
Typo on this slide! Should be inverse Fourier transforms. Sky to visibilities is forward transform, visibilities to sky is inverse transform.



View on GitHub @

friendlyVRI

A Virtual Radio Interferometer application

The Friendly Virtual Radio
Interferometer

The Friendly Virtual Radio Interferometer (VRI) is designed to simulate astronomical
observations using linked arrays of radio antennas in a technique called earth rotation
aperture synthesis. As the successor to the original Java-based VR, it focuses on
simulating the effect of combining different antenna layouts.

. Friendly VRI: Control Window
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Images on the following slides from friendlyVRI, by Cormac Purcell. https://crpurcell.github.io/friendlyVRI/
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An East-west array (ATCA), with a 4-hour observation. Note that there are 5 antennas, giving 10 baselines (each with a track in the u-v plane). Try to match each baseline
to it’s two telescopes!
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The same antenna configuration, but a 12 hour observation, giving full elliptical tracks. Note the difference between the u and v scales (from the tick marks): v is smaller,
causing the beam to be elliptical.



Telescope Array Hour Angle Range (hours):
ALMA Cycle6-C43-8
ALMA Cycle6-C43-9 -120  -6.0 0.0 6.0 12.0
05 = ALMA Cycle6-C43-10

= ASKAP ES 6 hJ_uﬂJ_LuJ_hJJJ_LE_u_L/

2 ASKAP ES_12

'§ 00 Lo o . - ASKAP ES_16 -5.80 5.86

@ : ASKAP ES_18

= ASKAP Full_30

2 ASKAP Full_36 Sampling Cadence (s): 300
ATCA 1.5A

05~ ATCA 1.5A_No_6
| | ATCA 1.58
0 o5 ATCA 1.58_No_6 — Acc —_—>
ATCA 1.5C
East-West (km) ATCA 1.5C_No_6
uv-Coverage Synthesised Beam
g e | : (O) \\ !
> \ \1 \ \ ‘v"r‘ )
T T T
u (kA)

Same array configuration, but I’ve moved the source to the (south) pole, making the u,v tracks perfectly circular, which makes the beam circular.
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uv-Coverage Synthesised Beam

Moving the antennas in an Earth-rotation synthesis telescope lets you fill in the missing gaps to some degree. With 4 configurations of antennas, you get 40 baseline
tracks, which improves the beam significantly.
Also, not simulated here: multifrequency synthesis, where you can use visibilities at different frequencies to fill in the u,v plane somewhat. (More on that later, maybe?)
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Here’s a VLA snapshot. Note the 3 arms means there’s 3 axes along which you get baselines within an arm. You then get 3 ‘petals’ associated with baselines between

different arms. See how you get a synthesized beam with spokes? Those spokes are aligned with the axes where there are the fewest visibilities: the image is least
constrained along those axes.
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VLA 5 hour observation. Earth rotation synthesis fills in the gaps, producing a more circular beam.
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Synthesised Beam

Arrays with many antennas can have a more complicated layout, which improves the instantaneous synthesized beam. Very good for shorter observations!




Primary beam effects

e The primary beam is the beam of the individual elements
that are being correlated (which doesn’t have to be the
same for all antennas).

e The primary beam modifies the signal received by the
antenna, and the resulting voltage. For a single source:

V = VAL, m)V

Interferometers can have elements with different beams, such as in VLBI where different sized/shaped dishes are used.

The reason for the square root is because then the beam is defined in intensity/power units, rather than voltage units. In principle there’s also the integral over directions
to get the voltage in the antenna, but for now let’s just work through for single source (since everything’s linear, right?).



Y = —zQw%-édQ

Vij _ / ‘/Z(l, m)2‘/3 (l, m) €—i27T(’LLl—|—Um)dQ

Vzg — / \/Az(l, m)A] (l, m)[(l’ m)e_iQﬂ'(uH'Um)dQ

Vij = f{\/Ai(l,m)Aj(l,m)I(l,m)}

F(Vis} = JAi(lm) 4,1, m)I(1,m)




Primary beam effects

F(Vis} = \JAi(lm) 4,1, m)I(1,m)

* Primary beam acts as a multiplicative factor on the image.
Correct by dividing the output of the imaging by the beam
model to recover the true intensity.

e This amplifies the noise in the image: dividing by the
beam model corrects the intensity but increases the noise
at the same time.

e Sensitivity can’t be recovered at the nulls (zeros) in the
beam (dividing by zero).




This is a LOFAR image of galaxy 1C342 and surroundings, with no primary beam correction. Note the ‘fading’, how sources appear dimmer at the edges.



Corresponding image WITH primary beam correction. Note that sources at the edge now look equally bright with the center. Note how the noise is hugely amplified at the
edges, especially around the nulls (which are simply blanked in the imaging software).



Imaging

® J(Il,M)measured iS @ continuous quantity, which we can

calculate by (inverse) Fourier transforming our visibility
measurements

* Since we’re producing digital images, this will end up
quantized on some pixel grid, like optical images.

* Unlike optical images, radio images are not photon
counting! This changes how they react to different pixel
sizes, and how intensity and flux density are determined.
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Consider an unresolved source broadened by some PSF/synthesized beam (dashed line).

Optical cameras are intrinsically flux density measuring: they integrate over the area of the pixel. Shrinking the pixel changes the signal per-pixel, but not the integrated
value.

Radio images are fundamentally different: they report intensity. Increasing the number of pixels increases integral, which is unphysical. Need to normalize by the
synthesized beam to get actual flux density (often called ‘integrated flux’ vs ‘peak flux’).

‘Peak flux’, aka intensity, can be read directly off the image. But this is not actual source intensity! It is flux density, if the source is unresolved. If source is resolved, then
it’s not well defined.

Integrated flux is found by summing over pixels, and dividing by sum-over-beam (to remove effects of PSF)



Imaging

* The imaging process creates an NxM pixel image from
the Fourier transform of the visibilities. The number of
pixels, and the size of each pixel, is set by the user.

e The most efficient method is an FFT algorithm, which
produces an NxM pixel image from an NxM grid of points
in the u,v plane.

* Baselines won'’t fall exactly onto this grid, so there’s some
gridding process which puts the visibilities onto the grid.

Visibilities that fall into the same grid point get average
together.




Imaging

 NxM and the pixel size are chosen by the user, but
generally informed by the observation parameters:

* Pixel size should be such that there are at least 3-5
pixels across the synthesized beam. The size of the
synthesized beam is inversely related to the longest
baseline in the observation.

* Number of pixels should be enough to cover the
primary beam*, out to about the first null, and
sometimes the first sidelobe if there’s a bright source
there.

The factor of 3-5 pixels (or more) across the beam is called the oversampling factor (because you sample more finely than your resolution). This is important because it
means you’re sampling the image well in case a source falls halfway between pixels (remember, not photon counting!). In principle, more oversampling is good, except
that it increases the number of pixels needed.

*: VLBI is slightly different. Smearing/decorrelation effects tend to dominate and limit the field-of-view to be smaller than the primary beam.



