
Exercise 2: Interferometric Imaging 
 
Behaviour of Fourier transforms can be kind of unintuitive. Let's code up a little imaging 
simulator and explore some phenomena. Using whatever programming language you like (a 
Jupyter is very good for this, but not required). 

Part 1: Set up 

Step 0: Decide if you want to do this in 1D or 2D. Both are fine: 1D makes it easier to plot 
and see what's going on; 2D is closer to actual interferometric imaging. I'm writing up the 
solutions with 1D. 

Step 1: define a 1D or 2D array as your 'sky'. To start with, let's just put in a delta function 
somewhere (all zeros, with one non-zero value). Optionally, define a coordinate array (in 
arbitrary units). The array size is arbitrary, but can be fairly large. A modern computer can do 
an FFT on a 10000 element array in no time at all. 

Step 2: Find an FFT package in whatever programming language you're using, and read up 
on how to use it. Note that, for example, scipy's fft does some funny things with ordering in 
the output results of the FFT. 

Take the FFT of your sky array, which gives you the visibilities. Set up a function to plot the 
amplitude and phase of the visibilities. Check that the results from inputing a delta function 
look reasonable. 

Step 3: Define a sampling/weight function. This is an array (with the same number of 
elements as the visibilities), which defines which Fourier components we're measuring. 
Setting the whole array equal to 1 is equivalent to a perfect observation (all possible 
baselines, equal weighting). Setting elements to zero gives missing baselines. Putting in 
non-zero measurements acts as a weighting scheme. 

Note that every weighting/sampling function must be symmetric (subject to however your 
FFT package is ordering things)! This is because all baselines also have the reverse 
baseline measured. If this is not followed then the resulting image (after inverse FFT-ing) will 
not be real-valued! (This is good check to see if you've done it right.) 

Also note that, to give the correct normalization in the end, the sum of the weights must add 
up to the number of grid points (aka the average must be 1), although this may depend 
slightly on the FFT algorithm you use. When we calculate the synthesized beam, in the next 
step, make sure that the amplitude of the peak is always equal to 1. 

Make a function to plot the weights (which will be important for confirming that they are 
symmetric). 

Step 4: Apply an inverse FFT to the product of the visibilities and the weights, to get the 
'image'. Set up a function to plot the image (and the 'synthesized beam', which can be found 
by inverse FFT-ing the weight function). 
 



In principle, you now have everything you need to define a sky and a weighting scheme in a 
few lines of code, do the FFTs, and invoke the plotting functions to show the results. If you're 
working in Jupyter, it should all convienetly fit into one cell. Let's start looking at some test 
cases! 

(Note that using scipy's fft package, I'm getting weird phase behaviour in some cases 
(particularly the delta functions). I don't understand it, but everything else, including the 
inverse transform, work fine. Bonus points to anyone who can figure out why.) 

 

Part 2: Experiments 

Let's go through a number of different test cases. For each, generate the figures (sky, 
amplitude and phase of visiblities, weights, image and synthesized beam) and make a few 
comments on the behaviour and what you expect based on Fourier transform theory.​ ​This 
table ​ might be helpful. 

1. First test case: delta function at the center of the image, with perfect sampling. How does 
the Fourier transform compare to the theoretical expectation? 

2. Shifted delta function: as with the above example, but move the delta function a few pixels 
in some direction (again, perfect uniform sampling). How does this change things, and does 
it match Fourier transform theory? Play with moving the delta function by different amounts 
and in different directions. Any thoughts about what this implies for sources very far from the 
center of an observation? 

3. Single delta-function source, with some limited sampling. Put in a delta function source 
somewhere (position shouldn't matter). Change the weight function to remove some parts of 
the ​u,v​ plane. Try removing long baselines (high frequencies) and see how that affects the 
resulting synthesized beam. Same with removing short baselines, or the mid-length 
baselines. Try a very sparse measurement (very few parts sampled). Make a few comments 
on the behaviour of the synthesized beam. 
 
4. Let's look at extended sources now. Put a top-hat function in your image, and play with 
the weighting again as before. How do the visibilities look, and how do they change as a 
function of the width of the tophat (and why?)? How does the image of the top-hat look 
depending on what information is present/missing? 
 
5. Let's start looking at the effects of noise in the visibilities. Create a sky with a delta 
function, and use a weighting that removes some of the shortest and longest baselines. 
Inject some noise into the visibilities by adding Gaussian random numbers (with some 
amplitude/width) at each grid point (note that noise should be hermitian, just like the data!). 
Comment on how the resulting image changes from the addition of noise. Also, commend on 
how the noise looks on small scales (adjacent pixels). 
 

https://en.wikipedia.org/wiki/Fourier_transform#Tables_of_important_Fourier_transforms
https://en.wikipedia.org/wiki/Fourier_transform#Tables_of_important_Fourier_transforms
https://en.wikipedia.org/wiki/Fourier_transform#Tables_of_important_Fourier_transforms


6. Finally, let's look at phase errors (from imperfect calibration). Again, let's start with a 
delta-function source and weights that remove the shortest and longest baselines. Without 
changing the amplitudes, introduce a random phase error (by multiplying by 
exp(i*phase_error)), which can be a uniform distribution of some width (say, +-10 degrees to 
start with). Again, make sure the visibilities are still Hermitian. Look at how the image 
changes as a result. Experiment with different widths of the phase error distribution to see 
how things change. 
 
 
 
 
 
 


